A short overview of Type Theory

Yves Bertot

June 2015

Motivation for types

- You know types, for instance in C int x = 3;
- ► Type errors are detected at *compile-time*
- Type verification removes errors from run-time errors
- Not powerful enough to remove all errors
- Type Theory: catch more errors at compile-time
- Comes from research on the foundations of mathematics
- This talk: simplified accound of types from mathematics and functional programming languages
- ► Conclusion: where CoQ comes from, a demo of this system

λ -calculus

- ► A small-scale model of programming languages,
- Extremely simple
 - ► Three constructs
 - function descriptions, function calls, variables
 - Only one input to functions
 - Only one output to functions
- No complications
 - ► Higher order: programs are values
 - No control on memory usage
 - several possible evaluation strategies

Syntax of λ -calculus

- \triangleright $\lambda x.e$ is the function that maps x to e
- A function is applied to an argument by writing it on the left
- $a e_1 e_2 = (a e_1) e_2$,
 - Several argument functions are a particular case
- if plus is the adding function and 1 and 2 numbers, then plus 1 2 is a number, and plus 1 is a function
- ▶ notation $\lambda xy.e$ for $\lambda x.\lambda y.e$,
- numbers, pairs, and data lists can be modeled.

Computing with the λ -calculus

- ▶ the value of $(\lambda x.e)$ a is the same as the value of e where all occurrences of x are replaced by a,
- exemple: $(\lambda x.plus\ 1\ x)\ 2 = plus\ 1\ 2$,
- beware of bound variables: they are the occurrences of x that should be replaced when computing e

$$(\lambda x. plus((\lambda x.x) 1) x) 2 = (\lambda x. plus 1 x) 2$$

$$(\lambda x. plus((\lambda x.x) 1) x) 2 = plus((\lambda x.x) 1) 2$$

- ▶ the occurrences of x in e of $\lambda x.e$ are called the bound variables,
- the free occurrences of x in e are bound in $\lambda x.e.$

recursion and infinite computation

- ► A recursive program can call itself
- ► Example x! = 1 (si x = 0) ou bien x! = x * (x 1)!
- ▶ In other words, there exists a function F such that f = F f
- For fact, fact = λx . if x = 0 then 1 else x * fact(x - 1)fact is a fixed point of $\lambda f(x)$. if x = 0 then 1 else x * f(x - 1)
- ▶ In pure λ calculus, there exists $Y_T = (\lambda xy.y(xxy))\lambda xy.y(xxy)$, so that Y F = F(Y F)
- \triangleright Y_T can be used to construct recusive functions
- ▶ Be careful for the evaluation strategy in presence of Y_T $Y_T \ F \to F(Y_T \ F) \to F(F(Y_T \ F)) \to \cdots$

A detailed explanation of fixed point computation

Name
$$\theta = (\lambda xy.y(xxy))$$

$$\theta\theta F = (\lambda xy.y(xxy))\theta F$$

$$= (\lambda y.y(\theta\theta y))F$$

$$= (\lambda y.y(\theta\theta y))F$$

$$= F(\theta\theta F)$$

Usual theorems about λ -calculus

Church Rosser property if $t \stackrel{*}{\to} t_1$ and $t \stackrel{*}{\to} t_2$, then there exists t_3 such that $t_1 \stackrel{*}{\to} t_3$ and $t_2 \stackrel{*}{\to} t_3$,

Uniqueness of normal forms if $t \stackrel{*}{\to} t'$ and t' can not be reduced further, then t' is unique,

Réduction standard the strategy "outermost-leftmost" reaches the normal form when it exists.

▶ Beware that some terms have no normal form $(\lambda x.xx)\lambda x.xx \rightarrow (\lambda x.xx)\lambda x.xx \rightarrow \cdots$.

Representing data-types

- ▶ Boolean: T is encoded as $\lambda xy.x$, F as $\lambda xy.y$, If as $\lambda bxy.b \times y$,
- ▶ pairs P: $\lambda xyz.z \times y$, and projections π_i : $\lambda p.p$ ($\lambda x_1 x_2.x_i$),
- Church encoding of numbers: n is represented by $\lambda fx. \overbrace{f(\cdots f \ x)\cdots}^{n}$,
- ▶ addition: $\lambda nm.\lambda fx.n f (m f x)$, multiplication: $\lambda nm.\lambda f.n (m f)$,
- ▶ comparison to 0 (let's call it Q): $\lambda n.n(\lambda x.F)$ T,
- ▶ predecessor: $\lambda n.\pi_1(n (\lambda p. P (\pi_2 p)(add 1 (\pi_2 p)))(P 0 0)),$
- ▶ factorial: $Y_T \lambda f x. If (Q x) 1 (mult x (f (pred x))).$

Simply typed λ -calculus

- ▶ Annotate the functions with information about their input,
 - provide documentation on programs,
- The consistency of programs can be verified without executing programs
- collections used in annotations are called types,
- ▶ notation: λx : t. e,
- ▶ primitive types, int, bool, ... but also function types $t_1 \to t_2$ (convention: $t_1 \to (t_2 \to t_3) \equiv t_1 \to t_2 \to t_3$),

Data-types and primitive operations

- Typing can handle new data-types and primitive operations,
- Making sure that operations are applied to compatible data,
- For instance, we add pairs and projectors,

$$\langle e_1, e_2 \rangle$$
 $fst \langle e_1, e_2 \rangle \leadsto e_1$

- ▶ New type for pairs: $t_1 * t_2$, and for $fst : t_1 * t_2 \rightarrow t_1$,
- Also possible to have native intgers

Examples

```
\lambda f: int \rightarrow int \rightarrow int. \lambda x: int. f \ x \ (f \times x) well typed \lambda f: int \rightarrow int. \lambda g: int \rightarrow int. f \ (g \ (f \times x)) well typed if x: int, \lambda f: int. \lambda x: int \rightarrow int. f \ x \ badly typed, f \ badly typed, whatever the type of f.
```

Type verification

- First stage: choose types for free variables
- verify that functions are applied to expressions of the correct type,
- recursive traversal of terms
- ► An algorithm described using inference rules

Typing rules

$$\frac{\Gamma \vdash x : t \qquad x \neq y}{\Gamma, x : t \vdash x : t} (1) \qquad \frac{\Gamma \vdash x : t \qquad x \neq y}{\Gamma, y : t' \vdash x : t} (2)$$

$$\frac{\Gamma \vdash e_1 : t_1 \qquad \Gamma \vdash e_2 : t_2}{\Gamma \vdash \langle e_1, e_2 \rangle : t_1 * t_2} (3)$$

$$\frac{\Gamma, x : t \vdash e : t'}{\Gamma \vdash \lambda x : t. \ e : t \to t'} (4)$$

$$\frac{\Gamma \vdash e_1 : t \to t' \qquad \Gamma \vdash e_2 : t}{\Gamma \vdash e_1 \ e_2 : t'} (5)$$

$$\frac{\Gamma \vdash fst : t_1 * t_2 \to t_1}{\Gamma \vdash snd} (6) \qquad \frac{\Gamma \vdash snd : t_1 * t_2 \to t_2}{\Gamma \vdash snd} (7)$$

Interpretation for logic

- Primitive types should be read as propositional variables,
- ▶ Read function types $t_1 \rightarrow t_2$ as implications,
- ▶ Read pair types $t_1 * t_2$ as conjunctions ("and"),
- The type of closed well-formed term is always a tautology,
 - Curry-Howard isomorphism, types-as-propositions,
- ► For a type t, finding e with this type, this means proving that it is a tautology
- Beware, all tautologies are not provable
- ▶ example: $((A \rightarrow B) \rightarrow A) \rightarrow A$ (Peirce's formula).

Peirce's formula

Α	В	$A \rightarrow B$	$(A \rightarrow B) \rightarrow A$	$((A \to B) \to A) \to A$
Т	Т	Т	Т	Т
Т	F	F	T	T
F	Т	Т	F	T
F	F	T	F	T

Types and logic

- ▶ $\lambda x : A * B.\langle snd x, fst x \rangle$ is a proof of $A \wedge B \Rightarrow B \wedge A$,
- Several proof systems are based on this principle Nuprl, Coq, Agda, Epigram,
- A type verification tool is a simple program
- Finding proofs is a difficult problem,
- Verifying proofs is easy,
- typed λ-calculus is also a small-scale model of a proof verification tool

Typed reduction

- ▶ Same computation rule as for pure λ -calculus,
- We can add a computation rule for pairs and projections
- Standard theorems:

subject reduction theorem types are preserved during computation,

weak normalization Every typed term has a normal form, strong normalization Every reduction chain is finite

A crossroad

- Toward programming languages
 - Type inference
 - Polymorphism
 - General recursion
- Towards proof systems
 - Universal quantification
 - Proofs by induction
 - Guaranteeing computation termination

Structural recursion

- Avoid infinite computations, which are "undefined",
- Providing recursive computations only for some types,
- Generalize primitive recursion,
- Well-formed types represent provable formulas
- reference : Gödel's system T (cf. Girard & Lafont & Taylor Proofs and types),

Structural recursion for integers

- A new type nat,
- ► Three new constants:
 - ▶ 0 : nat (represents 0)
 - S : nat → nat (represents successor),
 - rec_nat
- rec_nat is a recursor, it makes it possible to define recursive functions,
- Execution by pattern-matching (rec_nat v f is a recursive function)
 - ightharpoonup rec_nat v f 0 = v
 - ▶ rec_nat v f (S n) = f n (rec_nat P v f n)
- Accordingly the type of rec_nat is:
 - ▶ rec_nat : $t \to (\mathtt{nat} \to t \to t) \to \mathtt{nat} \to t$, for any type t,
- Termination of computation is again guaranteed by typing

Examples of recursive functions

- ▶ addition: $plus \equiv \lambda xy.rec_nat\ y\ (\lambda nv.S\ v)\ x$,
- ▶ predecessor: $pred \equiv rec_nat \ 0 \ (\lambda nv.n)$,
- ▶ subtraction: $minus \equiv \lambda xy.rec_nat \ x \ (\lambda nv.pred \ v) \ y)$,
 - subtraction is also a comparison test, minus x y = 0 si $x \le y$,
- ▶ multiplication: $\lambda xy.rec_nat O(\lambda nv.plus y v)$,
- any function for which we can predict the number of recursive calls (for instance division)
- ▶ Even functions that are not recursive primitive: Ackermann.

Example of binary trees (if time allows)

- Introduce a new type bin,
- Two constructors:
 - ▶ leaf : bin,
 - ▶ node : nat \rightarrow bin \rightarrow bin,

Example of binary trees (2)

- The recursor is defined accordingly to the constructors
 - rec_bin has three arguments (2+1), rec_bin f_1 f_2 x, is well-typed if the type of f_1 (resp. f_2) is adapted to pattern-matching and recursion by leaf (resp. node).
 - f_1 is a value of type t,
 - f_2 has (3+2) arguments,
 - 3 is the number of arguments of node,
 - ▶ 2 is the number of arguments of node in type bin,
 - extra arguments are values for recursive calls

rec_bin
$$f_1$$
 f_2 (node n t_1 t_2) =
$$f_2 n t_1 \text{ (rec_bin } f_1 f_2 t_1 \text{) } t_2 \text{ (rec_bin } f_1 f_2 t_2 \text{)}$$

Recursors and pattern-matching

Dependent types: Type families

- Functions whose values are types,
- "Diagonal" function: each value is in a different type (determined by a type family)
- ▶ example: A_i a sequence of types represented by a the function A: nat \rightarrow Type, we can think of a function f such that:
 - ▶ *f* 0 has type *A* 0,
 - ▶ f 1 has type A 1,
 - ▶ f 2 has typeA 2,
 - and so on,
- ▶ the type of f is noted f : Πx : nat.A x.

dependent products

- ▶ A pair $A_1 \times A_2$ maps an index $i \in \{1, 2\}$ to a value of type A_i ,
- ▶ More generally a sequence $(a_0, ..., a_n, ...)$ makes it possible to map an index $i \in \mathbb{N}$ to a value in A_i ,
- ▶ Such sequence is in $A_0 \times A_1 \times \cdots \times A_n \times \cdots = \prod_{i \in \mathbb{N}} A_i$,
- ► This notation of indexed product is adapted to describe this notion of function with dependent type

Typing rules for dependent products

$$\frac{\Gamma, x : t \vdash e : t'}{\Gamma \vdash \lambda x : t.e : \Pi x : t. t'}$$
$$\frac{\Gamma \vdash e_1 : \Pi x : t.t' \qquad \Gamma \vdash e_2 : t}{\Gamma \vdash e_1 \ e_2 : t'[e_2/x]}$$

- ► The notation $A \rightarrow B$ is shorthand for $\Pi x : A.B$ when x does not occur in B,
- if $f: \Pi x : \mathtt{nat}.A x$ then f: 1: A: 1.

logical interpretation of dependent products

- ▶ if B has type $A \rightarrow \text{Type}$, the logical interpretation is that B is a *predicate*
- ▶ if t : B i, then t is a proof of B i,
- if f: Πi: A.B i, then f makes it possible to constructs proofs of B i for every i: A,
- ► Read $\Pi i : A.B \ i$ as universal quantification and $f : \Pi i : A.B \ i$ as the proof of a universal quantification
- ▶ In Coq, one never writes $\Pi i : A.B i$ but always $\forall i : A, B i$.

Building proofs

- assume there exists a predicate even (in French pair)
- assume we have two theorems:

```
▶ even0 : even 0,

▶ even2 : \forall x : \text{nat}, even x \to \text{even} (S (S x)),
```

- We can compose these theorems to prove that a number is even
- ► For instance: even2 0 even0 : even (S (S 0)) is a proof that 2 is even
- even2 2 (even2 0 even0) : even 4
 is a proof that 4 is even
- ▶ even2 4 (even2 2 (even2 0 even0)) : even 6, and so on...

Dependent products and explicit polymorphism

- ▶ A polymorphic function has type $T[\alpha]$ for every possible instance of α ,
- ► This can be described explicitly by stating T as a type family T: Type → Type,
- ▶ The polymorphic type is described by Πx : Type. $T \times (with an extra argument),$
- ▶ For instance the type of pairs $t_1 * t_2$ can be described by a constant prod : Type \rightarrow Type,
- ▶ The notation $\langle e_1, e_2 \rangle$ is described by $pair: \Pi t_1: \mathrm{Type}.\Pi t_2: \mathrm{Type}.t_1 \rightarrow t_2 \rightarrow \mathrm{prod}t_1t_2,$
- ▶ Because of explicit polymorphism, pair now has 4 arguments, fst 3 arguments).

Dependent product and recursion

- rec_nat is a polymorphic constant, behavior repeated here
 - ightharpoonup rec_nat $P \ v \ f \ 0 = v$
 - rec_nat $P \ v \ f \ (S \ n) = f \ n \ (rec_nat \ P \ v \ f \ n)$
- rec_nat should also be usable to define functions with a dependent type
 - Need a type family P : nat → Type,
 - ► The value for 0 must be in P 0,
 - ▶ The value for S n must be in P (S n),
 - ▶ The value of any recursive call on n must be in P n,
- rec_nat :

$$\Pi P: \mathtt{nat} o \mathtt{Type}.P \ \mathtt{O} o (\Pi n: \mathtt{nat}.P \ n o P \ (\mathtt{S} \ n)) o \Pi n: \mathtt{nat}.P \ n$$

Logical formula: induction principle for natural numbers!

Inductive types and dependence

- Families of recursive types
- ▶ Elements of T_i may have sub-terms in T_j ,
- example: complete binary trees:
 - ▶ hleaf : T O,
 - ▶ hnode : Πn :nat. A \rightarrow T n \rightarrow T n \rightarrow T (S n)
- ▶ The type of each tree has information about the height,
- ► The constructor hnode states that both subterms must have the same height
- A recursor can be constructed automatically

Inductive predicates

- ▶ In inductive type families some instances may not be inhabited
- Example: even indexed by nat, with two constructors
 - ▶ even0: even 0.
 - ▶ even2: $\forall n$:nat. even $n \rightarrow$ even (S (S n)),
- ► En interprétation logique, le type of the recursor expresses that even is satisfied only by even numbers
- ▶ even_ind : \forall P : nat \rightarrow Prop,
 P 0 \rightarrow (\forall n:nat, even n \rightarrow P n \rightarrow P (S (S n))) \rightarrow \forall n:nat, even n \rightarrow P n

The Coq system: the calculus of inductive constructions

- Inductive predicates are very powerful
- In Coq, they are used to represent logical connectives, equality, existential quantification, except ∀ and →
- ► There are rules that govern the construction of dependent products to avoid paradoxes (Russell, Burali-Forti)
- One can define a new property by quantifying over all properties (impredicativity),
- A type inductive must satisfy constraints
- Recursors are replaced by a general notion of structural recursion

Simple uses of Coq

- One can use Coq without knowing about dependent types,
 - Defining only simply typed functions
 - One uses universal quantifiactions only in logical formula
 - ▶ The only type families one considers are inductive predicates
 - ► Tactics take care of constructing the most complex terms
- Dependent types can also be used for safer programming
- Future research
 - Make types less cumbersome (esp. for equality)
 - ▶ Integrate automatic proof search
 - Applications in reliable software development