
A short overview of Type Theory

Yves Bertot

June 2015

1 / 36



Motivation for types

I You know types, for instance in C int x = 3;

I Type errors are detected at compile-time

I Type verification removes errors from run-time errors

I Not powerful enough to remove all errors

I Type Theory: catch more errors at compile-time

I Comes from research on the foundations of mathematics

I This talk: simplified accound of types from mathematics and
functional programming languages

I Conclusion: where Coq comes from, a demo of this system

2 / 36



λ-calculus

I A small-scale model of programming languages,
I Extremely simple

I Three constructs
I function descriptions, function calls, variables

I Only one input to functions
I Only one output to functions

I No complications
I Higher order: programs are values
I No control on memory usage
I several possible evaluation strategies

3 / 36



Syntax ofλ-calculus

I λx .e is the function that maps x to e

I A function is applied to an argument by writing it on the left
I a e1 e2 = (a e1) e2,

I Several argument functions are a particular case

I if plus is the adding function and 1 and 2 numbers, then

plus 1 2 is a number, and plus 1 is a function

I notation λxy .e for λx .λy .e,

I numbers, pairs, and data lists can be modeled.

4 / 36



Computing with the λ-calculus

I the value of (λx .e) a is the same as the value of e where all
occurrences of x are replaced by a,

I exemple: (λx .plus 1 x) 2 = plus 1 2,

I beware of bound variables: they are the occurrences of x that
should be replaced when computing e

(λx . plus((λx .x) 1) x) 2 = (λx . plus 1 x) 2

(λx . plus((λx .x) 1) x) 2 = plus ((λx .x) 1) 2

I the occurrences of x in e of λx .e are called the bound
variables,

I the free occurrences of x in e are bound in λx .e.

5 / 36



recursion and infinite computation

I A recursive program can call itself

I Example x! = 1 (si x = 0) ou bien x! = x ∗ (x − 1)!

I In other words, there exists a function F such that f = F f

I For fact,
fact = λx . if x = 0 then 1 else x ∗ fact(x − 1)
fact is a fixed point of
λf x . if x = 0 then 1 else x ∗ f (x − 1)

I In pure λcalculus, there exists YT = (λxy .y(xxy))λxy .y(xxy),
so that Y F = F (Y F )

I YT can be used to construct recusive functions

I Be careful for the evaluation strategy in presence of YT

YT F → F (YT F )→ F (F (YT F ))→ · · ·

6 / 36



A detailed explanation of fixed point computation

Name θ = (λxy .y(xxy))

θθF = (λxy .y(xxy))θF

= (λy .y(θθy))F

= (λy .y(θθy))F

= F (θθF )

7 / 36



Usual theorems about λ-calculus

Church Rosser property if t
∗→ t1 and t

∗→ t2, then there exists t3
such that t1

∗→ t3 and t2
∗→ t3,

Uniqueness of normal forms if t
∗→ t ′ and t ′ can not be reduced

further, then t ′ is unique,

Réduction standard the strategy “outermost-leftmost” reaches the
normal form when it exists.

I Beware that some terms have no normal form
(λx .xx)λx .xx → (λx .xx)λx .xx → · · ·.

8 / 36



Representing data-types

I Boolean: T is encoded as λxy .x , F as λxy .y , If as
λbxy .b x y ,

I pairs P: λxyz .z x y , and projections πi : λp.p (λx1 x2.xi ),

I Church encoding of numbers: n is represented by

λfx .

n︷ ︸︸ ︷
f (· · · f x) · · · ),

I addition: λnm.λfx .n f (m f x),
multiplication: λnm.λf .n (m f ),

I comparison to 0 (let’s call it Q): λn.n (λx .F ) T ,

I predecessor: λn.π1(n (λp. P (π2 p)(add 1 (π2 p)))(P 0 0)),

I factorial: YTλfx .If (Q x) 1 (mult x (f (pred x))).

9 / 36



Simply typed λ-calculus

I Annotate the functions with information about their input,
I provide documentation on programs,

I The consistency of programs can be verified without executing
programs

I collections used in annotations are called types,

I notation: λx : t. e,

I primitive types, int, bool, . . . but also function types t1 → t2
(convention: t1 → (t2 → t3) ≡ t1 → t2 → t3),

10 / 36



Data-types and primitive operations

I Typing can handle new data-types and primitive operations,

I Making sure that operations are applied to compatible data,

I For instance, we add pairs and projectors,

〈e1, e2〉 fst〈e1, e2〉 e1

I New type for pairs: t1 ∗ t2, and for fst : t1 ∗ t2 → t1,

I Also possible to have native intgers

11 / 36



Examples

λf : int → int → int.λx : int.f x (f x x) well typed
λf : int → int.λg : int → int.f (g (f x)) well typed if x : int,
λf : int.λx : int → int.f x badly typed,
f f badly typed, whatever the type of f .

12 / 36



Type verification

I First stage: choose types for free variables

I verify that functions are applied to expressions of the correct
type,

I recursive traversal of terms

I An algorithm described using inference rules

13 / 36



Typing rules

Γ, x : t ` x : t
(1)

Γ ` x : t x 6= y

Γ, y : t ′ ` x : t
(2)

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` 〈e1, e2〉 : t1 ∗ t2

(3)

Γ, x : t ` e : t ′

Γ ` λx : t. e : t → t ′
(4)

Γ ` e1 : t → t ′ Γ ` e2 : t

Γ ` e1 e2 : t ′
(5)

Γ ` fst : t1 ∗ t2 → t1
(6)

Γ ` snd : t1 ∗ t2 → t2
(7)

14 / 36



Interpretation for logic

I Primitive types should be read as propositional variables,

I Read function types t1 → t2 as implications,

I Read pair types t1 ∗ t2 as conjunctions (“and”),
I The type of closed well-formed term is always a tautology,

I Curry-Howard isomorphism, types-as-propositions,

I For a type t, finding e with this type, this means proving that
it is a tautology

I Beware, all tautologies are not provable

I example: ((A→ B)→ A)→ A (Peirce’s formula).

15 / 36



Peirce’s formula

A B A→ B (A→ B)→ A ((A→ B)→ A)→ A

T T T T T
T F F T T
F T T F T
F F T F T

16 / 36



Types and logic

I λx : A ∗ B.〈snd x , fst x〉 is a proof of A ∧ B ⇒ B ∧ A,

I Several proof systems are based on this principle Nuprl, Coq,
Agda, Epigram,

I A type verification tool is a simple program

I Finding proofs is a difficult problem,

I Verifying proofs is easy,

I typed λ-calculus is also a small-scale model of a proof
verification tool

17 / 36



Typed reduction

I Same computation rule as for pure λ-calculus,

I We can add a computation rule for pairs and projections

I Standard theorems:

subject reduction theorem types are preserved during
computation,

weak normalization Every typed term has a normal form,
strong normalization Every reduction chain is finite

18 / 36



A crossroad

I Toward programming languages
I Type inference
I Polymorphism
I General recursion

I Towards proof systems
I Universal quantification
I Proofs by induction
I Guaranteeing computation termination

19 / 36



Structural recursion

I Avoid infinite computations, which are “undefined”,

I Providing recursive computations only for some types,

I Generalize primitive recursion,

I Well-formed types represent provable formulas

I reference : Gödel’s system T (cf. Girard & Lafont & Taylor
Proofs and types),

20 / 36



Structural recursion for integers

I A new type nat,
I Three new constants:

I 0 : nat (represents 0)
I S : nat → nat (represents successor),
I rec nat

I rec nat is a recursor, it makes it possible to define recursive
functions,

I Execution by pattern-matching (rec nat v f is a recursive
function)

I rec nat v f O = v
I rec nat v f (S n) = f n (rec nat P v f n)

I Accordingly the type of rec nat is:

I rec nat : t → (nat→ t → t)→ nat→ t, for any type t,

I Termination of computation is again guaranteed by typing

21 / 36



Examples of recursive functions

I addition: plus ≡ λxy .rec nat y (λnv .S v) x ,

I predecessor: pred ≡ rec nat 0 (λnv .n),
I subtraction: minus ≡ λxy .rec nat x (λnv .pred v) y),

I subtraction is also a comparison test, minus x y = 0 si x ≤ y ,

I multiplication: λxy .rec nat O (λnv .plus y v),

I any function for which we can predict the number of recursive
calls (for instance division)

I Even functions that are not recursive primitive: Ackermann.

22 / 36



Example of binary trees (if time allows)

I Introduce a new type bin,
I Two constructors:

I leaf : bin,
I node : nat → bin → bin → bin,

23 / 36



Example of binary trees (2)

I The recursor is defined accordingly to the constructors
I rec bin has three arguments (2+1), rec bin f1 f2 x , is

well-typed if the type of f1 (resp. f2) is adapted to
pattern-matching and recursion by leaf (resp. node).

I f1 is a value of type t,
I f2 has (3+2) arguments,

I 3 is the number of arguments of node,
I 2 is the number of arguments of node in type bin,

I extra arguments are values for recursive calls

rec bin f1 f2 (node n t1 t2) =
f2 n t1 (rec bin f1 f2 t1) t2 (rec bin f1 f2 t2)

24 / 36



Recursors and pattern-matching

I Ocaml :
let rec nat fun v f x =

match x with

O -> v | S p -> f p (rec nat v f p)

25 / 36



Dependent types: Type families

I Functions whose values are types,

I “Diagonal” function: each value is in a different type
(determined by a type family)

I example: Ai a sequence of types represented by a the function
A : nat→ Type, we can think of a function f such that:

I f 0 has type A 0,
I f 1 has type A 1,
I f 2 has typeA 2,
I and so on,

I the type of f is noted f : Πx : nat.A x .

26 / 36



dependent products

I A pair A1×A2 maps an index i ∈ {1, 2} to a value of type Ai ,

I More generally a sequence (a0, . . . , an, . . .) makes it possible
to map an index i ∈ N to a value in Ai ,

I Such sequence is in A0 × A1 × · · · × An × · · · = Πi∈NAi ,

I This notation of indexed product is adapted to describe this
notion of function with dependent type

27 / 36



Typing rules for dependent products

Γ, x : t ` e : t ′

Γ ` λx : t.e : Πx : t. t ′

Γ ` e1 : Πx : t.t ′ Γ ` e2 : t

Γ ` e1 e2 : t ′[e2/x ]

I The notation A→ B is shorthand for Πx : A.B when x does
not occur in B,

I if f : Πx : nat.A x then f 1 : A 1.

28 / 36



logical interpretation of dependent products

I if B has type A→ Type, the logical interpretation is that B is
a predicate

I if t : B i , then t is a proof of B i ,

I if f : Πi : A.B i , then f makes it possible to constructs proofs
of B i for every i : A,

I Read Πi : A.B i as universal quantification
and f : Πi : A.B i as the proof of a universal quantification

I In Coq, one never writes Πi : A.B i but always ∀i : A,B i .

29 / 36



Building proofs

I assume there exists a predicate even (in French pair)
I assume we have two theorems:

I even0 : even 0,
I even2 : ∀x : nat, even x → even (S (S x)),

I We can compose these theorems to prove that a number is
even

I For instance: even2 0 even0 : even (S (S O))

is a proof that 2 is even

I even2 2 (even2 0 even0) : even 4

is a proof that 4 is even

I even2 4 (even2 2 (even2 0 even0)) : even 6,
and so on. . .

30 / 36



Dependent products and explicit polymorphism

I A polymorphic function has typeT [α] for every possible
instance of α,

I This can be described explicitely by stating T as a type family
T : Type→ Type,

I The polymorphic type is described by Πx : Type.T x (with an
extra argument),

I For instance the type of pairs t1 ∗ t2 can be described by a
constant prod : Type→ Type→ Type,

I The notation 〈e1, e2〉 is described by
pair : Πt1 : Type.Πt2 : Type.t1 → t2 → prodt1t2,

I Because of explicit polymorphism, pair now has 4 arguments,
fst 3 arguments).

31 / 36



Dependent product and recursion

I rec nat is a polymorphic constant, behavior repeated here
I rec nat P v f O = v
I rec nat P v f (S n) = f n (rec nat P v f n)

I rec nat should also be usable to define functions with a
dependent type

I Need a type family P : nat→ Type,
I The value for 0 must be in P 0,
I The value for S n must be in P (S n),
I The value of any recursive call on n must be in P n,

I rec nat :
ΠP : nat→ Type.P O→ (Πn : nat.P n→ P (S n))→
Πn : nat.P n

I Logical formula: induction principle for natural numbers!

32 / 36



Inductive types and dependence

I Families of recursive types

I Elements of Ti may have sub-terms in Tj ,
I example: complete binary trees:

I hleaf : T 0,
I hnode : Πn :nat. A → T n → T n → T (S n)

I The type of each tree has information about the height,

I The constructor hnode states that both subterms must have
the same height

I A recursor can be constructed automatically

33 / 36



Inductive predicates

I In inductive type families some instances may not be inhabited
I Example: even indexed by nat, with two constructors

I even0: even O,
I even2: ∀n:nat. even n → even (S (S n)),

I En interprétation logique, le type of the recursor expresses
that even is satisfied only by even numbers

I even ind :

∀ P : nat → Prop,

P 0 →
(∀ n:nat, even n → P n → P (S (S n)))→

∀ n:nat, even n → P n

34 / 36



The Coq system: the calculus of inductive constructions

I Inductive predicates are very powerful

I In Coq, they are used to represent logical connectives,
equality, existential quantification, except ∀ and →

I There are rules that govern the construction of dependent
products to avoid paradoxes (Russell, Burali-Forti)

I One can define a new property by quantifying over all
properties (impredicativity),

I A type inductive must satisfy constraints

I Recursors are replaced by a general notion of structural
recursion

35 / 36



Simple uses of Coq

I One can use Coq without knowing about dependent types,
I Defining only simply typed functions
I One uses universal quantifiactions only in logical formula
I The only type families one considers are inductive predicates
I Tactics take care of constructing the most complex terms

I Dependent types can also be used for safer programming
I Future research

I Make types less cumbersome (esp. for equality)
I Integrate automatic proof search
I Applications in reliable software development

36 / 36


