A short overview of Type Theory

Yves Bertot

June 2015

/36

Motivation for types

> You know types, for instance in C int x = 3;

> Type errors are detected at compile-time

» Type verification removes errors from run-time errors

» Not powerful enough to remove all errors

» Type Theory: catch more errors at compile-time

» Comes from research on the foundations of mathematics

» This talk: simplified accound of types from mathematics and
functional programming languages

» Conclusion: where CoQ comes from, a demo of this system

2/36

M-calculus

> A small-scale model of programming languages,
> Extremely simple

» Three constructs

» function descriptions, function calls, variables

» Only one input to functions

» Only one output to functions
» No complications

» Higher order: programs are values

» No control on memory usage

» several possible evaluation strategies

3/36

Syntax of A\-calculus

> Ax.e is the function that maps x to e
» A function is applied to an argument by writing it on the left

> ae ea=(ae) e,
» Several argument functions are a particular case

» if plus is the adding function and and numbers, then

plus is a number, and plus is a function

> notation Axy.e for Ax.\y.e,

» numbers, pairs, and data lists can be modeled.

4/36

Computing with the A-calculus

» the value of (Ax.e) a is the same as the value of e where all
occurrences of x are replaced by a,

> exemple: (Ax.plus 1 x) 2 = plus 12,

» beware of bound variables: they are the occurrences of x that
should be replaced when computing e

(Ax. plus((Ax.x) 1) x) 2 = (Ax. plus 1 x) 2
(Ax. plus((Ax.x) 1) x) 2 = plus ((Ax.x) 1) 2

» the occurrences of x in e of Ax.e are called the bound
variables,

» the free occurrences of x in e are bound in Ax.e.

5/36

recursion and infinite computation

>

>

>

>

A recursive program can call itself
Example x! =1 (si x = 0) ou bien x! = x * (x — 1)!
In other words, there exists a function F such that f = F f

For fact,

fact = Ax. if x =0 then 1 else x x fact(x — 1)
fact is a fixed point of

Af x. if x=0then 1 else x x f(x — 1)

In pure Acalculus, there exists Y7 = (Axy.y(xxy))Axy.y(xxy),

sothat Y F=F(Y F)
Y7 can be used to construct recusive functions

Be careful for the evaluation strategy in presence of Yt
Yr F— F(YT F) = F(F(YT F)) — ---

6

36

A detailed explanation of fixed point computation

Name 6 = (Axy.y(xxy))

00F = (Axy.y(xxy))0F
(Ay-y(00y))F
(Ay-y(66y))F
— F(00F)

/ 36

Usual theorems about \-calculus

Church Rosser property if t = t; and t — t», then there exists t3
such that t; = t3 and t» = t3,

Uniqueness of normal forms if t = t/ and t’ can not be reduced
further, then t’ is unique,

Réduction standard the strategy “outermost-leftmost” reaches the
normal form when it exists.

» Beware that some terms have no normal form
(Ax) Ax.xx = (AXXX)AX XX —> - - -

8/36

Representing data-types

» Boolean: T is encoded as Axy.x, F as Axy.y, If as
Abxy.b x y,

» pairs P: Axyz.z x y, and projections m;: Ap.p (Ax1 x2.x;),

» Church encoding of numbers: n is represented by
n

——
AMx. f(oo-f x)--+),

» addition: Anm.Afx.n f (m f x),
multiplication: Anm.Af.n (m f),

» comparison to 0 (let's call it Q): An.n (Ax.F) T,
» predecessor: An.mi(n (Ap. P (m2 p)(add 1 (m2 p)))(P 0 0)),
» factorial: YrAfx.If (Q x) 1 (mult x (f (pred x))).

9/36

Simply typed A-calculus

» Annotate the functions with information about their input,
» provide documentation on programs,

» The consistency of programs can be verified without executing
programs

» collections used in annotations are called types,
» notation: A\x : t. e,

> primitive types, int, bool, ...but also function types t; — t
(convention: t; — (tp — t3) =t — th — t3),

36

Data-types and primitive operations

» Typing can handle new data-types and primitive operations,

v

Making sure that operations are applied to compatible data,

v

For instance, we add pairs and projectors,

(e1,€2) fst(er, &) ~ e

v

New type for pairs: t; * tp, and for fst : t; * tp — t1,

v

Also possible to have native intgers

36

Examples

A cint — int — int.Ax :int.f x (f x x) well typed

Af @ int — int.\g : int — int.f (g (f x)) well typed if x : int,
Af tint Ax @ int — int.f x badly typed,

f f badly typed, whatever the type of f.

12/36

Type verification

v

First stage: choose types for free variables

v

verify that functions are applied to expressions of the correct
type,
> recursive traversal of terms

v

An algorithm described using inference rules

13 /36

Typing rules

Mx:tkx:t

MN=-x:t XF#y

1
(1) My:t'Fx:t (2)
le: g Fl—e2:2(3)
rl—<61, > t1 * b
Mx:the:t
—— 7 (4)
l=Mx:t.e:t—t
[+ t—t et
= —22 (5)
e et
(6)

FEfst:t1xth > 11

(Esnd:tyxth — b

(7)

14 /36

Interpretation for logic

» Primitive types should be read as propositional variables,
» Read function types t; — t» as implications,
> Read pair types t; * t as conjunctions (“and”),

» The type of closed well-formed term is always a tautology,
» Curry-Howard isomorphism, types-as-propositions,

» For a type t, finding e with this type, this means proving that
it is a tautology

» Beware, all tautologies are not provable

» example: ((A— B) — A) — A (Peirce’s formula).

36

Peirce’'s formula

B|(A=-B)—-A|((A—=B)—A) —A

T >
MmHd4 T H®
<4 mn-d
mm -

i e |)

16 /36

Types

and logic

Ax 1 Ax B.(snd x, fst x) is a proof of AN B = BAA,
Several proof systems are based on this principle Nuprl, Coq,
Agda, Epigram,

A type verification tool is a simple program

Finding proofs is a difficult problem,

Verifying proofs is easy,

typed A-calculus is also a small-scale model of a proof
verification tool

36

Typed reduction

» Same computation rule as for pure A-calculus,
» We can add a computation rule for pairs and projections
» Standard theorems:

subject reduction theorem types are preserved during
computation,

weak normalization Every typed term has a normal form,

strong normalization Every reduction chain is finite

18 /36

A crossroad

» Toward programming languages
» Type inference
» Polymorphism
» General recursion
» Towards proof systems
» Universal quantification
» Proofs by induction
» Guaranteeing computation termination

19/36

Structural recursion

v

Avoid infinite computations, which are “undefined”,

v

Providing recursive computations only for some types,

v

Generalize primitive recursion,

v

Well-formed types represent provable formulas

v

reference : Godel's system T (cf. Girard & Lafont & Taylor
Proofs and types),

20 /36

Structural recursion for integers

v

A new type nat,
Three new constants:

» 0 : nat (represents 0)
» S : nat — nat (represents successor),
» rec_nat

v

» rec_nat is a recursor, it makes it possible to define recursive
functions,

Execution by pattern-matching (rec_nat v f is a recursive
function)

» recnat vf O=v
» recnat v f (Sn)=1f n(recnat Pv f n)

v

v

Accordingly the type of rec_nat is:

» recnat : t— (nat — t — t) — nat — t, for any type t,

v

Termination of computation is again guaranteed by typing

21/36

Examples of recursive functions

» addition: plus = Axy.rec nat y (Anv.S v) x,
» predecessor: pred = recnat 0 (Anv.n),

» subtraction: minus = Axy.recnat x (Anv.pred v) y),
» subtraction is also a comparison test, minus x y =0 si x <y,

» multiplication: Axy.recnat 0 (Anv.plus y v),

» any function for which we can predict the number of recursive
calls (for instance division)

» Even functions that are not recursive primitive: Ackermann.

22 /36

Example of binary trees (if time allows)

> Introduce a new type bin,
» Two constructors:

» leaf : bin,
» node : nat — bin — bin — bin,

23 /36

Example of binary trees (2)

» The recursor is defined accordingly to the constructors
» rec_bin has three arguments (2+1), rec_bin f; £ x, is
well-typed if the type of f; (resp. f2) is adapted to
pattern-matching and recursion by leaf (resp. node).
> f is a value of type t,
» f has (3+2) arguments,
» 3 is the number of arguments of node,
> 2 is the number of arguments of node in type bin,

» extra arguments are values for recursive calls

rec_bin f; f, (node n t; to) =
fonty (recbin fi f t1) tr (rec_bin fi f)

24 /36

Recursors and pattern-matching

» Ocaml :
let recnat fun v f x =
match x with
0->v | Sp->fp (recnat v £ p)

25 /36

Dependent types: Type families

v

Functions whose values are types,

v

“Diagonal” function: each value is in a different type
(determined by a type family)

v

example: A; a sequence of types represented by a the function
A :nat — Type, we can think of a function f such that:

f 0 has type A 0,

f 1 has type A 1,

f 2 has typeA 2,

and so on,

vV vy vy

v

the type of f is noted f : [lx : nat.A x.

26 /36

dependent products

v

A pair A1 x A maps an index i € {1,2} to a value of type A;,

» More generally a sequence (ap, ..., ap,...) makes it possible
to map an index / € N to a value in A; ,

v

Such sequence is in Ag X A1 X +-- X Ap X -+ = MjenA;,

v

This notation of indexed product is adapted to describe this
notion of function with dependent type

27 /36

Typing rules for dependent products

Mx:the:t
TEXx:te:MNx:t. t
MEe :Nx:t.t/ Nte:t
e e: t'e)/x]

» The notation A — B is shorthand for Nx : A.B when x does
not occur in B,

» if f:Tlx:nat.Axthenf1:AL.

28 /36

logical interpretation of dependent products

» if B has type A — Type, the logical interpretation is that B is
a predicate

» if t: B i, then tis a proof of B i,

» if f:T1i:A.B i, then f makes it possible to constructs proofs
of B i for every i : A,

» Read i : A.B i as universal quantification
and f : [1i : A.B i as the proof of a universal quantification

> In Coq, one never writes i : A.B i but always Vi : A, B i.

29 /36

Building proofs

> assume there exists a predicate even (in French pair)
> assume we have two theorems:

» even0 : even O,
» even? : Vx:nat, even x — even (S (S x)),

» We can compose these theorems to prove that a number is
even

» For instance: even2 0 evenO : even (S (S 0))
is a proof that 2 is even

> even2 2 (even2 0 evenO) : even 4
is a proof that 4 is even

> even?2 4 (even2 2 (even2 O evenO)) : even 6,
and so on. ..

30/36

Dependent products and explicit polymorphism

v

A polymorphic function has type T [«] for every possible
instance of a,

This can be described explicitely by stating T as a type family
T : Type — Type,

The polymorphic type is described by lNx : Type. T x (with an
extra argument),

For instance the type of pairs t; * t, can be described by a
constant prod : Type — Type — Type,

The notation (ey, ep) is described by

pair : Ity : Type.llty : Type.t; — tp — prodt b,

Because of explicit polymorphism, pair now has 4 arguments,
fst 3 arguments).

31/36

Dependent product and recursion

» rec_nat is a polymorphic constant, behavior repeated here
» recnat Pvf0O=v
» recnat Pv f (Sn)="f n(recmnat Pv f n)
» rec_nat should also be usable to define functions with a
dependent type
> Need a type family P : nat — Type,

» The value for 0 must be in P 0,
» The value for S n must be in P (S n),
» The value of any recursive call on n must be in P n,
» rec_nat:
MNP :nat — Type.P 0 — (Mn:nat.P n— P (S n)) —
Mn:nat.P n

» Logical formula: induction principle for natural numbers!

32/36

Inductive types and dependence

» Families of recursive types
» Elements of T; may have sub-terms in T;,
> example: complete binary trees:
» hleaf : T O,
» hnode : llnmat. A - Tn — Tn — T (S n)
> The type of each tree has information about the height,
» The constructor hnode states that both subterms must have

the same height

> A recursor can be constructed automatically

33/36

Inductive predicates

> In inductive type families some instances may not be inhabited
» Example: even indexed by nat, with two constructors
» evenO: even O,
» even2: Vn:nat. even n — even (S (S n)),
» En interprétation logique, le type of the recursor expresses
that even is satisfied only by even numbers
> even_ind :
VY P : nat — Prop,
PO —
(V n:nat, even n - Pn — P (S (S n)))—
V n:nat, even n — P n

34 /36

The Coq system: the calculus of inductive constructions

> Inductive predicates are very powerful

» In Coq, they are used to represent logical connectives,
equality, existential quantification, except V and —

» There are rules that govern the construction of dependent
products to avoid paradoxes (Russell, Burali-Forti)

» One can define a new property by quantifying over all
properties (impredicativity),
» A type inductive must satisfy constraints

» Recursors are replaced by a general notion of structural
recursion

35/36

Simple uses of Coq

» One can use Coq without knowing about dependent types,
Defining only simply typed functions

One uses universal quantifiactions only in logical formula
The only type families one considers are inductive predicates
Tactics take care of constructing the most complex terms

vV vy vVvYy

» Dependent types can also be used for safer programming
» Future research

» Make types less cumbersome (esp. for equality)
> Integrate automatic proof search
» Applications in reliable software development

36

36

