A short overview of Type Theory

Yves Bertot

June 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation for types

- You know types, for instance in C int x = 3;
- Type errors are detected at *compile-time*
- Type verification removes errors from *run-time* errors
- Not powerful enough to remove all errors
- Type Theory: catch more errors at compile-time
- Comes from research on the foundations of mathematics
- This talk: simplified accound of types from mathematics and functional programming languages
- \blacktriangleright Conclusion: where Coq comes from, a demo of this system

λ -calculus

- A small-scale model of programming languages,
- Extremely simple
 - Three constructs
 - function descriptions, function calls, variables
 - Only one input to functions
 - Only one output to functions
- No complications
 - Higher order: programs are values
 - No control on memory usage
 - several possible evaluation strategies

Syntax of λ -calculus

- λx.e is the function that maps x to e
- A function is applied to an argument by writing it on the left
- $a e_1 e_2 = (a e_1) e_2$,
 - Several argument functions are a particular case
- if *plus* is the adding function and 1 and 2 numbers, then *plus* 1 2 is a number, and *plus* 1 is a function
- notation $\lambda xy.e$ for $\lambda x.\lambda y.e$,
- numbers, pairs, and data lists can be modeled.

Computing with the λ -calculus

- ► the value of (\u03c0 x.e) a is the same as the value of e where all occurrences of x are replaced by a,
- exemple: $(\lambda x. plus \ 1 \ x) \ 2 = plus \ 1 \ 2$,
- beware of bound variables: they are the occurrences of x that should be replaced when computing e

$$(\lambda x. plus((\lambda x.x) 1) x) 2 = (\lambda x. plus 1 x) 2$$
$$(\lambda x. plus((\lambda x.x) 1) x) 2 = plus((\lambda x.x) 1) 2$$

- ► the occurrences of x in e of \u03c6 x.e are called the bound variables,
- the free occurrences of x in e are bound in $\lambda x.e.$

recursion and infinite computation

- A recursive program can call itself
- Example x! = 1 (si x = 0) ou bien x! = x * (x 1)!
- In other words, there exists a function F such that f = F f

- ► In pure λ calculus, there exists $Y_T = (\lambda xy.y(xxy))\lambda xy.y(xxy)$, so that Y F = F(Y F)
- Y_T can be used to construct recusive functions
- ▶ Be careful for the evaluation strategy in presence of Y_T Y_T F → $F(Y_T$ F) → $F(F(Y_T$ F)) → · · ·

A detailed explanation of fixed point computation

Name $\theta = (\lambda xy.y(xxy))$

$$\begin{aligned} \theta \theta F &= (\lambda \times y.y(\times \times y)) \theta F \\ &= (\lambda y.y(\theta \theta y)) F \\ &= (\lambda y.y(\theta \theta y)) F \\ &= F(\theta \theta F) \end{aligned}$$

イロン イロン イヨン イヨン 二日

7/36

Usual theorems about λ -calculus

Church Rosser property if $t \stackrel{*}{\to} t_1$ and $t \stackrel{*}{\to} t_2$, then there exists t_3 such that $t_1 \stackrel{*}{\to} t_3$ and $t_2 \stackrel{*}{\to} t_3$,

Uniqueness of normal forms if $t \xrightarrow{*} t'$ and t' can not be reduced further, then t' is unique,

Réduction standard the strategy "outermost-leftmost" reaches the normal form when it exists.

Beware that some terms have no normal form (λx.xx)λx.xx → (λx.xx)λx.xx → ···.

Representing data-types

- Boolean: T is encoded as λxy.x, F as λxy.y, If as λbxy.b x y,
- ▶ pairs *P*: $\lambda xyz.z \times y$, and projections π_i : $\lambda p.p$ ($\lambda x_1 \times x_2.x_i$),
- Church encoding of numbers: *n* is represented by $\lambda fx. \overbrace{f(\cdots f}^{n} x) \cdots$),
- addition: λnm.λfx.n f (m f x), multiplication: λnm.λf.n (m f),
- comparison to 0 (let's call it Q): $\lambda n.n (\lambda x.F) T$,
- ▶ predecessor: $\lambda n.\pi_1(n (\lambda p. P (\pi_2 p)(add 1 (\pi_2 p)))(P 0 0)),$
- ► factorial: $Y_T \lambda fx.If(Q x) 1 (mult x (f (pred x)))$.

Simply typed λ -calculus

- Annotate the functions with information about their input,
 - provide documentation on programs,
- The consistency of programs can be verified without executing programs
- collections used in annotations are called types,
- notation: λx : t. e,
- ▶ primitive types, int, bool, ... but also function types $t_1 \rightarrow t_2$ (convention: $t_1 \rightarrow (t_2 \rightarrow t_3) \equiv t_1 \rightarrow t_2 \rightarrow t_3$),

10/36

Data-types and primitive operations

- Typing can handle new data-types and primitive operations,
- Making sure that operations are applied to compatible data,
- For instance, we add pairs and projectors,

$$\langle e_1, e_2 \rangle \qquad \textit{fst} \langle e_1, e_2 \rangle \rightsquigarrow e_1$$

- New type for pairs: $t_1 * t_2$, and for $fst : t_1 * t_2 \rightarrow t_1$,
- Also possible to have native intgers

Examples

 $\lambda f : int \rightarrow int \rightarrow int.\lambda x : int.f \times (f \times x)$ well typed $\lambda f : int \rightarrow int.\lambda g : int \rightarrow int.f (g (f x))$ well typed if x : int, $\lambda f : int.\lambda x : int \rightarrow int.f x$ badly typed, f f badly typed, whatever the type of f.

Type verification

- First stage: choose types for free variables
- verify that functions are applied to expressions of the correct type,
- recursive traversal of terms
- An algorithm described using inference rules

Typing rules

$$\frac{\overline{\Gamma} \vdash x : t \quad x \neq y}{\overline{\Gamma}, x : t \vdash x : t} (1) \qquad \frac{\overline{\Gamma} \vdash x : t \quad x \neq y}{\overline{\Gamma}, y : t' \vdash x : t} (2)$$

$$\frac{\overline{\Gamma} \vdash e_1 : t_1 \quad \overline{\Gamma} \vdash e_2 : t_2}{\overline{\Gamma} \vdash \langle e_1, e_2 \rangle : t_1 * t_2} (3)$$

$$\frac{\overline{\Gamma}, x : t \vdash e : t'}{\overline{\Gamma} \vdash \lambda x : t. e : t \rightarrow t'} (4)$$

$$\frac{\overline{\Gamma} \vdash e_1 : t \rightarrow t' \quad \overline{\Gamma} \vdash e_2 : t}{\overline{\Gamma} \vdash e_1 : e_2 : t'} (5)$$

$$\overline{\Gamma} \vdash fst : t_1 * t_2 \rightarrow t_1} (6) \qquad \overline{\Gamma} \vdash snd : t_1 * t_2 \rightarrow t_2} (7)$$

Interpretation for logic

- Primitive types should be read as propositional variables,
- Read function types $t_1 \rightarrow t_2$ as implications,
- Read pair types t₁ * t₂ as conjunctions ("and"),
- The type of closed well-formed term is always a tautology,
 - Curry-Howard isomorphism, types-as-propositions,
- For a type t, finding e with this type, this means proving that it is a tautology
- Beware, all tautologies are not provable
- example: $((A \rightarrow B) \rightarrow A) \rightarrow A$ (Peirce's formula).

Peirce's formula

A	В	$A \rightarrow B$	$(A \rightarrow B) \rightarrow A$	$((A \to B) \to A) \to A$
Т	Т	Т	Т	Т
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	F	Т

Types and logic

- $\lambda x : A * B.(snd x, fst x)$ is a proof of $A \land B \Rightarrow B \land A$,
- Several proof systems are based on this principle Nuprl, Coq, Agda, Epigram,
- A type verification tool is a simple program
- Finding proofs is a difficult problem,
- Verifying proofs is easy,
- ► typed λ-calculus is also a small-scale model of a proof verification tool

Typed reduction

- Same computation rule as for pure λ -calculus,
- We can add a computation rule for pairs and projections
- Standard theorems:

subject reduction theorem types are preserved during computation,

weak normalization Every typed term has a normal form, strong normalization Every reduction chain is finite

A crossroad

Toward programming languages

- Type inference
- Polymorphism
- General recursion
- Towards proof systems
 - Universal quantification
 - Proofs by induction
 - Guaranteeing computation termination

Structural recursion

- Avoid infinite computations, which are "undefined",
- Providing recursive computations only for some types,
- Generalize primitive recursion,
- Well-formed types represent provable formulas
- reference : Gödel's system T (cf. Girard & Lafont & Taylor Proofs and types),

Structural recursion for integers

- A new type nat,
- Three new constants:
 - ▶ 0 : nat (represents 0)
 - S : nat \rightarrow nat (represents *successor*),
 - rec_nat
- rec_nat is a recursor, it makes it possible to define recursive functions,
- Execution by pattern-matching (rec_nat v f is a recursive function)
 - rec_nat v f 0 = v
 - rec_nat v f (S n) = f n (rec_nat P v f n)
- Accordingly the type of rec_nat is:
 - ▶ rec_nat : $t \rightarrow (\texttt{nat} \rightarrow t \rightarrow t) \rightarrow \texttt{nat} \rightarrow t$, for any type t,
- Termination of computation is again guaranteed by typing

Examples of recursive functions

- ► addition: $plus \equiv \lambda xy.rec_nat y (\lambda nv.S v) x$,
- predecessor: $pred \equiv \texttt{rec_nat 0} (\lambda nv.n)$,
- ▶ subtraction: $minus \equiv \lambda xy.rec_nat x (\lambda nv.pred v) y)$,
 - subtraction is also a comparison test, minus $x \ y = 0$ si $x \le y$,
- multiplication: $\lambda xy.rec_nat O(\lambda nv.plus y v)$,
- any function for which we can predict the number of recursive calls (for instance division)
- Even functions that are not recursive primitive: Ackermann.

Example of binary trees (if time allows)

- Introduce a new type bin,
- Two constructors:
 - ▶ leaf : bin,
 - ▶ node : nat \rightarrow bin \rightarrow bin \rightarrow bin,

Example of binary trees (2)

The recursor is defined accordingly to the constructors

- rec_bin has three arguments (2+1), rec_bin f₁ f₂ x, is well-typed if the type of f₁ (resp. f₂) is adapted to pattern-matching and recursion by leaf (resp. node).
- *f*₁ is a value of type *t*,
- ▶ *f*₂ has (3+2) arguments,
 - 3 is the number of arguments of node,
 - 2 is the number of arguments of node in type bin,
- extra arguments are values for recursive calls

rec_bin $f_1 f_2$ (node $n t_1 t_2$) = $f_2 n t_1$ (rec_bin $f_1 f_2 t_1$) t_2 (rec_bin $f_1 f_2 t_2$)

Recursors and pattern-matching

Dependent types: Type families

- Functions whose values are types,
- "Diagonal" function: each value is in a different type (determined by a type family)
- ► example: A_i a sequence of types represented by a the function A : nat → Type, we can think of a function f such that:
 - f 0 has type A 0,
 - f 1 has type A 1,
 - f 2 has typeA 2,
 - and so on,
- the type of f is noted $f : \Pi x : nat.A x$.

dependent products

- A pair $A_1 \times A_2$ maps an index $i \in \{1, 2\}$ to a value of type A_i ,
- More generally a sequence (a₀,..., a_n,...) makes it possible to map an index i ∈ N to a value in A_i,
- ▶ Such sequence is in $A_0 \times A_1 \times \cdots \times A_n \times \cdots = \prod_{i \in \mathbb{N}} A_i$,
- This notation of indexed product is adapted to describe this notion of function with dependent type

Typing rules for dependent products

$$\frac{\Gamma, x : t \vdash e : t'}{\Gamma \vdash \lambda x : t.e : \Pi x : t. t'}$$
$$\frac{\Gamma \vdash e_1 : \Pi x : t.t'}{\Gamma \vdash e_1 : e_2 : t'}$$

- The notation A → B is shorthand for Πx : A.B when x does not occur in B,
- if $f : \Pi x : nat.A x$ then f : 1 : A : 1.

logical interpretation of dependent products

- if B has type $A \rightarrow$ Type, the logical interpretation is that B is a *predicate*
- if t : B *i*, then *t* is a proof of *B i*,
- If f : Πi : A.B i, then f makes it possible to constructs proofs of B i for every i : A,
- Read Πi : A.B i as universal quantification and f : Πi : A.B i as the proof of a universal quantification
- ► In Coq, one never writes $\Pi i : A.B i$ but always $\forall i : A, B i$.

Building proofs

- assume there exists a predicate even (in French pair)
- assume we have two theorems:
 - ▶ even0 : even 0,
 - ▶ even2 : $\forall x : nat$, even $x \to even$ (S (S x)),
- We can compose these theorems to prove that a number is even
- For instance: even2 0 even0 : even (S (S 0)) is a proof that 2 is even
- even2 2 (even2 0 even0) : even 4
 is a proof that 4 is even
- even2 4 (even2 2 (even2 0 even0)) : even 6, and so on...

Dependent products and explicit polymorphism

- A polymorphic function has type T[α] for every possible instance of α,
- This can be described explicitly by stating T as a type family T : Type → Type,
- The polymorphic type is described by Πx : Type.T x (with an extra argument),
- For instance the type of pairs t₁ * t₂ can be described by a constant prod : Type → Type → Type,
- ► The notation $\langle e_1, e_2 \rangle$ is described by pair : Πt_1 : Type. Πt_2 : Type. $t_1 \rightarrow t_2 \rightarrow \text{prod}t_1t_2$,
- Because of explicit polymorphism, pair now has 4 arguments, fst 3 arguments).

Dependent product and recursion

- rec_nat is a polymorphic constant, behavior repeated here
 - rec_nat P v f 0 = v
 - rec_nat $P \lor f$ (S n) = f n (rec_nat $P \lor f n$)
- rec_nat should also be usable to define functions with a dependent type
 - Need a type family $P : \mathtt{nat} \to \mathtt{Type}$,
 - The value for 0 must be in P 0,
 - The value for S n must be in P(S n),
 - The value of any recursive call on n must be in P n,
- rec_nat :

 $\begin{array}{l} \Pi P: \texttt{nat} \rightarrow \texttt{Type}.P \text{ } 0 \rightarrow (\Pi n: \texttt{nat}.P \text{ } n \rightarrow P \text{ } (\texttt{S} \text{ } n)) \rightarrow \\ \Pi n: \texttt{nat}.P \text{ } n \end{array}$

Logical formula: induction principle for natural numbers!

Inductive types and dependence

- Families of recursive types
- Elements of T_i may have sub-terms in T_j ,
- example: complete binary trees:
 - hleaf : T 0,
 - ▶ hnode : Πn :nat. A \rightarrow T n \rightarrow T n \rightarrow T (S n)
- The type of each tree has information about the height,
- The constructor hnode states that both subterms must have the same height
- A recursor can be constructed automatically

Inductive predicates

- In inductive type families some instances may not be inhabited
- Example: even indexed by nat, with two constructors
 - ▶ even0: even 0,
 - ▶ even2: $\forall n:$ nat. even $n \rightarrow$ even (S (S n)),
- En interprétation logique, le type of the recursor expresses that even is satisfied only by even numbers

```
▶ even_ind :

\forall P : nat \rightarrow Prop,

P 0 \rightarrow

(\forall n:nat, even n \rightarrow P n \rightarrow P (S (S n)))\rightarrow

\forall n:nat, even n \rightarrow P n
```

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

The Coq system: the calculus of inductive constructions

- Inductive predicates are very powerful
- In Coq, they are used to represent logical connectives, equality, existential quantification, except ∀ and →
- There are rules that govern the construction of dependent products to avoid paradoxes (Russell, Burali-Forti)
- One can define a new property by quantifying over all properties (*impredicativity*),
- A type inductive must satisfy constraints
- Recursors are replaced by a general notion of structural recursion

Simple uses of Coq

One can use Coq without knowing about dependent types,

- Defining only simply typed functions
- One uses universal quantifiactions only in logical formula
- The only type families one considers are inductive predicates
- Tactics take care of constructing the most complex terms
- Dependent types can also be used for safer programming
- Future research
 - Make types less cumbersome (esp. for equality)
 - Integrate automatic proof search
 - Applications in reliable software development